Abstract

Neuronal AMPA receptors comprise pore forming glutamate receptor (GluR) proteins and auxiliary transmembrane AMPA receptor regulatory (TARP) subunits. TARPs traffic AMPA receptors to synapses and regulate channel gating. Both intracellular and extracellular regions in TARPs regulate AMPA receptors; however, the details for these interactions remain unknown. Here, we employ site-directed mutagenesis to determine functional interactions between GluR1 and the prototypical TARP, stargazin. We find that a point mutation in the glutamate-binding region of GluR1 corresponding to the Lurcher allele of GluRδ2, abolishes stargazin's effects on receptor trafficking and channel gating. A point mutation that prevents receptor desensitization modulates the effects of stargazin on channel gating but preserves receptor trafficking. These studies identify a functional interaction of stargazin with the extracellular glutamate-binding domain of AMPA receptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.