Abstract

Oocyte maturation (meiosis reinitiation) in starfish is induced by the natural hormone 1-methyladenine (1-MeAde). Cyclic AMP seems to play a negative role in maturation since 1-MeAde triggers a decrease of the oocyte cAMP concentration and since intracellular microinjections of cAMP delay or inhibit maturation. Cyclic GMP is also inhibitory but other nucleotides such as cCMP, cIMP, and cUMP are inactive. The involvement of cAMP and cGMP in the control of oocyte maturation has been further investigated by the use of the stereoisomers of the phosphodiesterase-stable adenosine and guanosine 3′,5′-phosphorothioates (cAMPS and cGMPS). The Sp isomers of cAMPS and cGMPS respectively activate cAMP-dependent protein kinase and cGMP-dependent kinase, while the Rp isomers inhibit the kinases. Extracellular addition of these cAMPS and cGMPS isomers has no effect on the oocytes. Intracellular microinjection of the kinase-activating (Sp)-cAMPS and (Sp)-cGMPS delays or inhibits 1-MeAde-induced maturation in a concentration-dependent manner ( I 50, 30 and 300 μ M, respectively). Microinjections of (Rp)-cAMPS and (Rp)-cGMPS have no inhibitory effects and neither trigger nor facilitate maturation. Using various analogs, we found that the delaying or inhibiting effect is restricted to the compounds activating cAMP-dependent kinase, while the compounds inactive on or inhibiting the kinase have no effects on maturation. The inhibitory effect of (Sp)-cAMPS can be reversed by comicroinjection of the heat-stable inhibitor of cAMP-dependent protein kinase, by comicroinjection of the antagonist (Rp)-cAMPS, or by an increase in the 1-MeAde concentration. The negative effects of (Sp)-cAMPS or (Sp)-cGMPS are observed only when these isomers are microinjected during the hormone-dependent period. These results suggest that a cAMP-dependent inhibitory pathway participates in the maintenance of the prophase arrest of oocytes and that 1-MeAde acts both by inhibiting this negative pathway (dis-inhibitory pathway) and by stimulating a parallel activatory pathway leading to oocyte maturation. The generality of this mechanism is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.