Abstract
StarD7 belongs to START protein family involved in lipid traffic, metabolism, and signaling events. Its precursor, StarD7.I which is important for mitochondrial homeostasis, is processed to the StarD7.II isoform that lacks the mitochondrial targeting sequence and is mainly released to the cytosol. StarD7 knockdown interferes with cell migration by an unknown mechanism. Here, we demonstrate that StarD7 silencing decreased connexin 43 (Cx43), integrin β1, and p-ERK1/2 expression in the non-tumoral migratory HTR-8/SVneo cells. StarD7-deficient cells exhibited Golgi disruption and reduced competence to reorient the microtubule-organizing center. The migratory capacity of StarD7-silenced cells was reestablished when Cx43 level was resettled, while p-ERK1/2 expression remained low. Importantly, ectopic expression of the StarD7.II isoform not only restored cell migration but also ERK1/2, Cx43, and integrin β1 expression. Thus, StarD7 is implicated in cell migration through an ERK1/2/Cx43 dependent mechanism but independent of the StarD7.I function in the mitochondria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.