Abstract

An optical cross-connect switch using the star-coupler-based frequency-division-multiplex technique are discussed. Two specific tunable receivers have been implanted. The first is a heterodyne receiver with a tunable laser as the local oscillator (LO) and the second is a tunable filter followed by a direct-detection receiver. In the heterodyne receiver, the tunable LO was a monolithic three-section multiple-quantum-well distributed Bragg laser capable of a 1000-GHz tuning range. Receiver sensitivity was measured to be -38 dBm at 1 Gb/s (BER=10/sup -10/). The power margin in the system substantiated feasibility for a 400*400 switch. In the tunable-filter receiver, the tunable filter is a tunable two-stage optical fiber Fabry-Perot filter design consisting of a narrowband filter followed by a wideband filter. The tuning of the filters is computer controlled, and the combined filter has a tuning range of 15000 GHz with a finesse of approximately=5170. Therefore, it is capable of covering over 1000 channels of 2.9 GHz each. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.