Abstract
Starch belongs to the most abundant biopolymers on Earth. As a source of energy, starch is degraded by a large number of various amylolytic enzymes. However, only about 10% of them are capable of binding and degrading raw starch. These enzymes usually possess a distinct sequence-structural module, the so-called starchbinding domain (SBD). In general, all carbohydrate-binding modules (CBMs) have been classified into the CBM families. In this sequence-based classification the individual types of SBDs have been placed into seven CBM families: CBM20, CBM21, CBM25, CBM26, CBM34, CBM41 and CBM45. The family CBM20, known also as a classical C-terminal SBD of microbial amylases, is the most thoroughly studied. The three-dimensional structures have already been determined by X-ray crystallography or nuclear magnetic resonance for SBDs from five CBM families (20, 25, 26, 34 and 41), and the structure of the CBM21 has been modelled. Despite differences among the amino acid sequences, the fold of a distorted beta-barrel seems to be conserved together with a similar way of substrate binding (mainly stacking interactions between aromatic residues and glucose rings). SBDs have recently been discovered in many non-amylolytic proteins. These may, for example, have regulatory functions in starch metabolism in plants or glycogen metabolism in mammals. SBDs have also found practical uses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.