Abstract

Diets containing different starch types can affect enzymatic digestion of starch and thereby starch availability for microbial fermentation in the gut. However, the role of starch chemistry in nutrient digestion and flow and microbial profile has been poorly explained. Eight ileal-cannulated pigs (29.4 ± 0.9 kg body weight) were fed 4 diets containing 70% purified starch (amylose content, <5, 20, 28, and 63%; reflected by in vitro maximal digestion rate; 1.06, 0.73, 0.38, and 0.22%/min, respectively) in a replicated 4 × 4 Latin square. Ileal and fecal starch output, postileal crude protein yield, fecal total SCFA and total butyrate content, and gene copies ofBifidobacterium spp. in feces were higher ( P < 0.05) when pigs consumed the slowly digestible starch diet than the remaining 3 starch diets. The in vitro starch digestion rate had a negative, nonlinear relationship with ileal starch flow ( R 2 = 0.98; P < 0.001). Ileal starch flow was positively related to Bifidobacterium spp. ( R 2 = 0.27; P < 0.01), Lactobacillus group ( R 2 = 0.22; P < 0.01), and total butyrate content ( R 2 = 0.46; P < 0.01) but was not related to Enterobacteriaceae ( R 2 < 0.00; P = 0.92). In conclusion, starch with high amylose content and low in vitro digestibility increased postileal nutrient flow and microbial fermentation and selectively promoted Bifidobacterium spp. in the distal gut.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.