Abstract

We describe an in situ method of synthesizing highly branched gold nanoflower (AuNFs) using aqueous seed extract of Syzygium cumini (L.) Skeels as reductant in the presence of 0.3% starch. Surprisingly, when the same reaction was carried out in the absence of starch or with starch at a lower concentration (0.15%), instead of flower-like morphology quasi-spherical or polyhedral nanoparticles (AuNPs) are obtained. The nanomaterials were extensively characterized by HRTEM, FESEM, UV–Vis, FTIR, XRD, XPS and TGA analysis. The biological activities of the materials were investigated for antimicrobial activities against four bacterial strains that include one Gram positive (Staphylococcus aureus MTCC 121), two Gram negative (Escherichia coli MTCC 40 and Pseudomonas aeruginosa MTCC 4673) and one fungi (Candida albicans MTCC 227). The nanoparticles functioned as effective antimicrobial and anti-biofilm agents against all the strains under study. Controlled study revealed that, the AuNFs showed improved efficacy over conventional polyhedral AuNPs against all the microbes under study which might be attributed to the larger surface-to-volume ratio of the nanoflowers. The AuNFs also showed effective in vitro anticancer activity against a human liver cancer cell line (HepG2) with no significant cytotoxicity. Our data suggest that the AuNFs can significantly reduce the cancer cell growth with IC50 value of 20 µg mL−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.