Abstract

Fe/Mn bimetallic carbon materials were synthesized by combining oat and urea, followed by and carbonization processes, the activity and mechanism of the obtained materials in activating peroxymonosulfate (PMS) for sulfamethoxazole (SMX) degradation were determined. Data suggested that the obtained material (CN@FeMn-10-800) showed the optimal performance for SMX degradation under the1:8:0.05:0.05 mass ratios of oat/urea/Fe/Mn. Around 91.2 % SMX (10 mg L−1) was removed under the conditions of 0.15 g L−1 CN@FeMn-10-800 and 0.20 g L−1 PMS. The CN@FeMn-10-800 showed great adaptability under different conditions, satisfactory activation repeatability and versatility. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that core-shell structure with rich porous of CN@FeMn-10-800 was achieved. Quenching test and electron paramagnetic resonance (EPR) indicated that surface bound oxygen and singlet oxygen (1O2) were the dominate reactive groups in this system. X-ray photoelectron spectroscopy (XPS) suggested that graphite N, Fe0, Fe3C and Mn(II) were the dominant active sites. Through the work, a simple strategy could be found to make high-value use of biomass and use it to effectively purified wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.