Abstract
Targeted colonic drug delivery systems are needed for the treatment of endemic colorectal pathologies, such as Crohn's disease, ulcerative colitis, and colorectal cancer. These drug delivery vehicles are difficult to formulate, as they need to remain structurally intact whilst navigating a wide range of physiological conditions across the upper gastrointestinal tract. In this work we show how starch hydrogel bulk structural and molecular level parameters influence their properties as drug delivery platforms. The in vitro protocols mimic in vivo conditions, accounting for physiological concentrations of gastrointestinal hydrolytic enzymes and salts. The structural changes starch gels undergo along the entire length of the human gastrointestinal tract have been quantified, and related to the materials' drug release kinetics for three different drug molecules, and interactions with the large intestinal microbiota. It has been demonstrated how one can modify their choice of starch in order to fine tune its corresponding hydrogel's pharmacokinetic profile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.