Abstract

Starch content and activities of some enzymes of starch metabolism were determined in wild-type, N2-fixing (fix+) nodules and in two non-N2-fixing (fix−) nodules induced by Bradyrhizobium japonicum mutant strains, T5-95 and T8-1, on soybean (Glycine max L.) roots. The T5-95 nodules are similar to wild type in ultrastructure, but the T8-1 nodules are different in that the bacteroids are not released from the infection thread. After initial accumulation to relatively high concentration, starch was depleted during nitrogen fixation in fix+ nodules. However, in fix− nodules, the accumulated starch was not metabolized. The activity of starch-bound starch synthase (EC 2.4.1.21) declined in fix+ nodules but remained high in fix− nodules. The activity of α-amylase (EC 3.2.1.1) was only slightly higher than wild type in T5-95 but was four times higher than wild type in T8-1 nodules. The activity of starch phosphorylase (EC 2.4.1.1) increased in all nodule types from 14 to 21 days postinfection. A positive correlation was observed between the capacity of nodules to fix N2 and their capacity to degrade starch. Collectively, these results support the concept that starch accumulated during early stages of nodule development is metabolized to supply energy for nitrogen fixation and to meet the metabolic demands of bacteroids. Key words: nitrogen fixation, starch content, effective and ineffective nodules, starch synthase, starch phosphorylase, α-amylase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call