Abstract

Starch-chitosan hydrogels were produced by oxidation of soluble starch to produce polyaldehyde and subsequently cross-linked with chitosan via reductive alkylation. The swelling ratio of starch-chitosan membranes was increased gradually with increasing starch ratio, but it was always lower than the native chitosan. In dry state, starch-chitosan membranes with low starch ratio (0.16, 0.38) showed similar tensile strength values to those of native chitosan while these values decreased with increasing starch ratios (0.73-1.36). Membranes in physiological buffer solution (PBS) gave a tensile modulus between 2.8 and 1.0 MPa, decreasing with increasing starch ratio (0.16-1.36 (Wstarch/Wchitosan)). When the membranes were incubated in PBS only, a moderate weight loss was observed for the first two weeks. Original weights of low starch weight ratio membranes (0-0.38) were at near 85%, while high ratio samples (0.73-1.55) were kept around 70% after three months. However, for the membranes incubated in alpha-amylase solution, very fast weight loss was observed. For low starch ratio membranes (0.16, 0.38, 0.73), the residual original weights were measured to be 11%, 6%, 20%, while for high ratio membranes (1.04 and 1.36) these were 45% and 30%, respectively, after two months of enzyme incubation. Scanning electron microscopy analysis of alpha-amylase degraded membranes exhibited rough surface morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.