Abstract

Starch and chitosan, polysaccharides derived from natural sources, have significant potential across various domains. Starch is extracted from starch-bearing plants, such as potatoes, whereas chitosan is obtained from the exoskeletons of marine animals, fungi and insects. However, the original forms of starch and chitosan have several limitations, such as low solubility and weak mechanical strength. Interestingly, the combined effects of starch and chitosan resulted in the development of starch-chitosan blends with markedly improved functional properties. These blends demonstrated high tensile strength, improved hydrophilicity and increased adsorption capacity. Furthermore, modification of starch-chitosan blends by techniques such as crosslinking and incorporation of other functional materials contributes to diverse characteristics and functionalities. This review addresses a crucial gap in the literature by providing an overview and up-to-date analysis of starch-chitosan blends. The preparation methods and functional properties of these blends in various forms, such as films, beads and hydrogels, have been extensively discussed. Emphasis is placed on the versatile applications of these blends in research, development and industries such as pharmaceuticals, wastewater treatment, agriculture and food technology. This review aims to provide an insightful overview of starch-chitosan blends and stimulate broader interdisciplinary research interests. By providing concluding insights and prospects, this review highlights the potential for further exploration of the impact of starch-chitosan blends on consumers and the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.