Abstract
Cellulose nanofibers (CNFs) were isolated from unripe banana peel by acid hydrolysis, with different acid concentrations (0.1%, 1.0% and 10% v/v), followed by mechanical treatment with high-pressure homogenizer. Banana starch-based films added with CNFs (0.2% w/w) as a reinforcing agent were produced by the casting method. The rheological behavior of aqueous dispersions of CNFs (1.0% w/w) and their effects on the properties of nanocomposite films were investigated. All aqueous dispersions of CNFs showed gel-like behavior and, when incorporated to the films, CNFs improved their water barrier properties and mechanical resistance as demonstrated by the increase in tensile strength and Young's modulus. Moreover, CNFs were well dispersed in the composite matrix. CNFs prepared at higher concentration, followed by mechanical treatment (FNM1 and FNM10), formed films with low moisture (13.66%) and solubility in water (24.1%). Whereas, CNFs prepared at the lowest acid concentration without mechanical treatment (FN0.1) led to films with high elongation at break (30.6%) and good tensile strength (12.3 MPa). Regardless of the used CNFs, all the nanocomposites displayed lower UV/light transmission than control film. The nanocomposite has potential use in food packaging, since the use of CNFs can promote improvements on barrier, optical and mechanical properties. Cellulose nanofibers isolated from agro-industrial residues offer the potential to reinforce composites of biodegradable polymers, producing a value-added material.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.