Abstract

Oxidative rancidity of food products and massive consumption of plastic packaging have put the necessity in manufacturing novel antioxidant biodegradable packaging films. A comprehensive investigation was conducted on starch/poly(butylene adipate-co-terephthalate) (PBAT) antioxidant blown films, in which starch acted as a gatekeeper for the controlled release of propyl gallate (PG). PG was well integrated into the matrices and bound to starch molecules by hydrogen bonding. All films showed strong anti-ultraviolet performance, and higher oxygen barrier than the traditional polyethylene film. Increasing starch proportions promoted the swelling of films and the release of PG, thereby causing higher antioxidant activity at the same contact time to free radical solutions. Similar polarity made PG prone to partition and rapid migration into the food simulants with higher ethanol concentration and the high-fat-content peanut butter. The film with 20:80 w/w starch/PBAT proportion and 3% w/w PG content effectively suppressed the oxidation of peanut butter within 300-day storage. Findings demonstrated this strategy for manufacturing starch/PBAT antioxidant films as a long-term active packaging in food industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call