Abstract

12-Tungstophosphoric acid (PW) immobilized on carbon-coated Fe3O4 nanoparticles (Fe3O4@C-PW) was prepared through a combination of hydrothermal and chemical co-precipitation. The intermediate carbon layer, which was produced from starch as a green material, protects the magnetic core and also improves the dispersion and catalytic activity of the nanoparticles. Characterization of this catalyst was investigated by high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometry, and the acidic properties were studied by NH3-temperature programmed desorption and potentiometric titration. The HRTEM image showed that the catalyst had a well-defined core–shell structure with an average particle size of 50 nm. The characterization data derived from FT-IR reveal that basic structure and geometry of the Keggin anion are preserved after synthesis of Fe3O4@C-PW. The as-prepared Fe3O4@C-PW was used as a nanocatalyst for the synthesis of various bis(indolyl)methanes and β-functionalized indoles in water. The catalyst can be recovered simply using an external magnetic field and reused several times without appreciable loss of its catalytic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.