Abstract

ABSTRACT Starburst galaxies, which are known as ‘reservoirs’ of high-energy cosmic-rays, can represent an important high-energy neutrino ‘factory’ contributing to the diffuse neutrino flux observed by IceCube. In this paper, we revisit the constraints affecting the neutrino and gamma-ray hadronuclear emissions from this class of astrophysical objects. In particular, we go beyond the standard prototype-based approach leading to a simple power-law neutrino flux, and investigate a more realistic model based on a data-driven blending of spectral indexes, thereby capturing the observed changes in the properties of individual emitters. We then perform a multi-messenger analysis considering the extragalactic gamma-ray background (EGB) measured by Fermi-LAT and different IceCube data samples: the 7.5-yr high-energy starting events (HESE) and the 6-yr high-energy cascade data. Along with starburst galaxies, we take into account the contributions from blazars and radio galaxies as well as the secondary gamma-rays from electromagnetic cascades. Remarkably, we find that, differently from the highly-constrained prototype scenario, the spectral index blending allows starburst galaxies to account for up to $40{{\ \rm per\ cent}}$ of the HESE events at $95.4{{\ \rm per\ cent}}$ CL, while satisfying the limit on the non-blazar EGB component. Moreover, values of $\mathcal {O}(100\, \mathrm{PeV})$ for the maximal energy of accelerated cosmic-rays by supernovae remnants inside the starburst are disfavoured in our scenario. In broad terms, our analysis points out that a better modelling of astrophysical sources could alleviate the tension between neutrino and gamma-ray data interpretation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.