Abstract

StarBench is a project focused on benchmarking and validating different star-formation and stellar feedback codes. In this first StarBench paper we perform a comparison study of the D-type expansion of an HII region. The aim of this work is to understand the differences observed between the twelve participating numerical codes against the various analytical expressions examining the D-type phase of HII region expansion. To do this, we propose two well-defined tests which are tackled by 1D and 3D grid- and SPH- based codes. The first test examines the `early phase' D-type scenario during which the mechanical pressure driving the expansion is significantly larger than the thermal pressure of the neutral medium. The second test examines the `late phase' D-type scenario during which the system relaxes to pressure equilibrium with the external medium. Although they are mutually in excellent agreement, all twelve participating codes follow a modified expansion law that deviates significantly from the classical Spitzer solution in both scenarios. We present a semi-empirical formula combining the two different solutions appropriate to both early and late phases that agrees with high-resolution simulations to $\lesssim2\%$. This formula provides a much better benchmark solution for code validation than the Spitzer solution. The present comparison has validated the participating codes and through this project we provide a dataset for calibrating the treatment of ionizing radiation hydrodynamics codes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.