Abstract
A series of oligo(thiophene)-modified “soluble” star-shaped ring-opening metathesis polymerization (ROMP) polymers were prepared by sequential living ROMP of norbornene and a cross-linking agent using a molybdenum-alkylidene catalyst, followed by Wittig-type coupling for termination with oligo(thiophene) carboxaldehydes. The resultant star-shaped ROMP polymers displayed unique emission properties affected by the core size and arm repeat units as well as the kind of oligothiophene coated. The effects of the thiophene groups on photophysical properties of star-shaped/linear polymers were studied via time-resolved fluorescence spectroscopy. Fluorescence lifetimes were determined in THF as 400, 640, 730, and 820 ps for Star 3TPh, Linear 3TPh, Star 4T, and Linear 4T, respectively. A significant enhancement of the nonradiative rate constants knr in the star-shaped polymers results in relatively lower fluorescence quantum yields and shorter fluorescence lifetimes compared to the corresponding linear polymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: ACS omega
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.