Abstract

Classical fused-ring electron acceptors (FREAs) with a linear acceptor-donor-acceptor (A-D-A) architecture continuously break records of power conversion efficiency (PCE) in nonfullerene organic solar cells. In contrast, the development of star-shaped FREAs still lags behind. Herein, a new C3h-symmetric and electron-rich core, benzotri(cyclopentadithiophene) (BTCDT) in which the central benzo[1,2-b:3,4-b':5,6-b″]trithiophene fused with three outer thiophenes via three cyclopentadienyl rings, is synthesized and used for the construction of star-shaped FREAs (BTCDT-IC and BTCDT-ICF). Owing to the strong electron-donating ability of the BTCDT unit, both acceptors exhibit the effective intramolecular charge transfer, leading to the strong absorption in the region of 500-800 nm with narrow band gaps below 1.70 eV as well as suitable highest occupied molecular orbital and lowest unoccupied molecular orbital levels. Compared with nonfluorinated BTCDT-IC, fluorinated BTCDT-ICF red-shifts the absorption peak to 688 nm and reduces the band gap to 1.62 eV, which induces a broader external quantum efficiency (EQE) response ranging from 300 to 800 nm and a higher maximum EQE of 70% while blending with a wide band gap polymer donor J61. The J61:the BTCDT-ICF blend film exhibits more suitable phase morphology compared with the J61:BTCDT-IC blend film, which is responsible for the enhanced EQE value, increased short-circuit current density(JSC), and fill factor (FF) in organic solar cell devices. As a result, the J61:BTCDT-ICF-based device yields a best PCE of 8.11% with a high JSC of 16.93 mA cm-2 and a high FF of 65.6%, demonstrating that the BTCDT-based star-shaped FREAs hold great potential for nonfullerene organic solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call