Abstract

The aim of this study was to improve the dispersibility of graphite nanoplatelets (GNP) in films based on poly(ε-caprolactone) (PCL). To this end, a star-shaped PCL with furoate-like end groups (PCL-Fur), potentially capable of interacting/reacting with the surface of the graphene layers through Diels-Alder reactions, was synthesized by enzymatic catalysis. PCL-Fur was applied for film development by blending it with a commercial high molecular weight PCL (PCL-L) and GNP. The reactivity of GNP with respect to furoate groups was demonstrated by studying the thermal behavior of the GNP/methyl 2-furoate system, while the dispersibility of graphite in the solution containing PCL-Fur was studied by UV–Vis measurements. GNP proved to be well dispersed and adhered to the polymer matrix in the PCL-L/PCL-Fur/GNP composite films prepared by casting, in contrast to the films based on the neat PCL-L. This fine GNP dispersion resulted in films characterized by high electrical conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.