Abstract
Several dendritic bridging ligands were designed and synthesized to develop more sensitive and efficient electrochemiluminescent (ECL) polynuclear Ru(II) complexes. Various types of novel two-armed, four-armed and six-armed tris(bipyridyl)ruthenium core dendrimers were synthesized by coordinating dendritic polybipyridyl ligands with Ru(II) complexes, and the effect of the ligand and the dendritic network on the ECL characteristics were studied. Their electrochemical redox potentials, UV, photoluminescence (PL), and relative ECL intensities were also investigated in detail. The synthesized metallodendrimers exhibited strong metal-to-ligand charge transfer (MLCT) absorption at 428–451 nm and emission at 591–601 nm. Most of the newly synthesized metallodendrimers showed enhanced ECL intensities compared to the reference complex, [Ru( o-phen) 3](PF 6) 2. In particular, the ECL intensities of the six-armed heptanuclear ruthenium complexes were almost four times greater than that of [Ru( o-phen) 3] 2+. These metallodendrimers could be utilized as efficient ECL materials and light emitting devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.