Abstract

In this paper we establish a new characterisation of star-regular categories, using a property of internal reflexive graphs, which is suggested by a recent result due to O. Ngaha Ngaha and the first author. We show that this property is, in a suitable sense, invariant under regular completion of a category in the sense of A. Carboni and E.M. Vitale. Restricting to pointed categories, where star-regularity becomes normality in the sense of the second author, this reveals an unusual behaviour of the exactness property of normality (i.e. the property that regular epimorphisms are normal epimorphisms) compared to other closely related exactness properties studied in categorical algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.