Abstract

In previous work, the authors computed archimedian heights of hermitian line bundles on families of polarized, n-dimensional abelian varieties. In this paper, a detailed analysis of the results obtained in the setting of abelian fibrations is given, and it is shown that the proofs can be modified in such a way that they no longer depend on the specific setting of abelian fibrations and hence extend to a quite general situation. Specifically, we let f : X→Y be any family of smooth, projective, n-dimensional complex varieties over some base, and consider a line bundle on X equipped with a smooth, hermitian metric. To this data is associated a hermitian line bundle M on Y characterized by conditions on the first Chern class. Under mild additional hypotheses, it is shown that, for generically chosen sections of L, the integral of the (n+1)-fold star product of Green's currents associated to the sections, integrated along the fibers of f, is the log-norm of a global section of M. Furthermore, it is proven that in certain general settings the global section of M can be explicitly expressed in terms of point evaluations of the original sections. A particularly interesting example of this general result appears in the setting of polarized Enriques surfaces when M is a moduli space of degree-2 polarizations. In this setting, the global section constructed via Green's currents is equal to a power of the Φ-function first studied by R. Borcherds. Additional examples and problems are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.