Abstract

Cervical cancer is the most common genital malignancy and the high-risk human papillomaviruses (HPV type 16, 18 and 31, and so on) are major agents for its cause. A key switch for the onset of cervical cancers by HPVs is the cellular degradation of the tumor-suppressor p53 that is mediated by the HPV-generated E6 protein. E6 forms a complex with the E3 ubiquitin-ligase E6-associated protein (E6AP) leading to p53 degradation. The components that control E6 expression and the mechanisms for regulation of the expression in host cells remain undefined. Here we show that the nuclear noncanonical poly(A) polymerase (PAP) speckle targeted PIPKIα regulated PAP (Star-PAP) controls E6 mRNA polyadenylation and expression and modulates wild-type p53 levels as well as cell cycle profile in high-risk HPV-positive cells. In the absence of Star-PAP, treatment of cells with the chemotherapeutic drug VP-16 dramatically reduced E6 and increased p53 levels. This diminished both cell proliferation and anchorage-independent growth required for cancer progression, indicating a synergism between VP-16 treatment and the loss of Star-PAP. This identifies Star-PAP as a potential drug target for the treatment of HPV-positive cancer cells. These data provide a mechanistic basis for increasing the sensitivity and efficiency of chemotherapy in the treatment of cancers that have low levels of wild-type p53.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.