Abstract

Cholesterol metabolism as initiated by mitochondrial sterol 27-hydroxylase (CYP27A1) is a ubiquitous pathway capable of synthesizing multiple key regulatory oxysterols involved in lipid homeostasis. Previously we have shown that the regulation of its activities within hepatocytes is highly controlled by the rate of mitochondrial cholesterol delivery. In the present study, we hypothesized that increasing expression of the mitochondrial cholesterol delivery protein, steroidogenic acute regulatory protein (StAR), is able to lower lipid accumulation in liver, aortic wall, as well as in serum in a well-documented animal model, apolipoprotein E-deficient (apoE(-/-)) mice. ApoE(-/-) mice, characterized by increased serum, liver, and endothelial cholesterol and triglyceride levels by 3 months of age, were infected with recombinant cytomegalovirus (CMV)-StAR adenovirus to increase StAR protein expression. Six days following infection, serum total cholesterol and triglycerides had decreased 19 and 30% (P < 0.01), respectively, with a compensatory 40% (P < 0.01) increase in serum HDL-cholesterol in increased StAR expressing mice as compared to controls (no or control virus). Histologic and biochemical analysis of the liver demonstrated not only a dramatic decrease in cholesterol ( downward arrow25%; P < 0.01), but an even more marked decrease in triglyceride ( downward arrow56%; P < 0.01) content. En bloc Sudan IV staining of the aorta revealed a >80% (P < 0.01) decrease in neutral lipid staining. This study demonstrates for the first time a possible therapeutic role of the CYP27A1-initiated pathway in the treatment of dyslipidemias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call