Abstract

The steroidogenic acute regulatory protein (StAR) belongs to a family of 15 StAR-related lipid transfer (START) domain proteins termed StARD1-StARD15. StAR (StARD1) induces adrenal and gonadal steroidogenesis by moving cholesterol from the outer mitochondrial membrane to the inner mitochondrial membrane by an unclear process that involves conformational changes that have been characterized as a molten globule transition. We expressed, purified, and assessed the activity and cholesterol-binding behavior of StARD1 and StARD3-D7, showing that StARD6 had activity equal to StARD1, whereas StARD4, D5, and D7 had little or no activity with adrenal mitochondria in vitro. Partial proteolysis examined by mass spectrometry suggests that StARD6 has a protease-sensitive C-terminus, similar to but smaller than that of StARD1. Experiments using urea denaturation, stopped-flow kinetics and measurements of mitochondrial membrane association suggests that StARD1 and StARD6 both unfold and refold slowly with similar kinetic patterns. Isothermal titration calorimetry suggests that StARD6 interacts with mitochondrial membranes as well as or better than StARD1. Computational modeling of StARD6 suggests that it has a similar fold to StARD1, with a hydrophobic sterol-binding pocket and a unique C-terminal extension. StARD6, which is expressed only in male germ-line cells, thus exhibits biological and biophysical properties that imply a role in steroidogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.