Abstract

With the aim of investigating the presence of molecular and dust clumps linked to two star forming regions identified in the expanding molecular envelope of the stellar wind bubble RCW78, we analyzed the distribution of the molecular gas and cold dust. To accomplish this study we performed dust continuum observations at 870 \mu m and 13CO(2-1) line observations with the APEX telescope, using LABOCA and SHeFI-1 instruments, respectively, and analyzed Herschel images at 70, 160, 250, 350, and 500 \mu m. These observations allowed us to identify cold dust clumps linked to region B (named the Southern clump) and region C (clumps 1 and 2) and an elongated Filament. Molecular gas was clearly detected linked to the Southern clump and the Filament. The velocity of the molecular gas is compatible with the location of the dense gas in the expanding envelope of RCW78. We estimate dust temperatures and total masses for the dust condensations from the emissions at different wavelengths in the far-IR and from the molecular line using LTE and the virial theorem. Masses obtained through different methods agree within a factor of 2-6. CC-diagrams and SED analysis of young stellar objects confirmed the presence of intermediate and low mass YSOs in the dust regions, indicating that moderate star formation is present. In particular, a cluster of IR sources was identified inside the Southern clump. The IRAC image at 8 \mu m revealed the existence of an infrared dust bubble of 16 arcsec in radius probably linked to the O-type star HD117797 located at 4 kpc. The distribution of the near and mid infrared emission indicate that warm dust is associated with the bubble.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.