Abstract

We present an analysis of ultradeep UV and H{alpha} imaging of five nearby spiral galaxies to study the recent star formation in the outer disk. Using azimuthally averaged ellipse photometry as well as aperture photometry of individual young stellar complexes, we measure how star formation rates (SFRs) and UV and H{alpha} colors vary with radius. We detect azimuthally averaged UV flux to {approx}1.2-1.4 R{sub 25} in most galaxies; at the edge of the detected UV disk, the surface brightnesses are 28-29 mag arcsec{sup -2}, corresponding to SFR surface densities of {approx}3 Multiplication-Sign 10{sup -4} M{sub Sun} yr{sup -1} kpc{sup -2}. Additionally, we detect between 120 and 410 young stellar complexes per galaxy, with a significant number of detections out to {approx}1.5 R{sub 25}. We measure radial FUV-NUV profiles, and find that the dispersion in the UV colors of individual young stellar complexes increases with radius. We investigate how radial variations in the frequency of star formation episodes can create color gradients and increasing dispersion in the UV colors of star-forming regions, like those observed in our study. Specifically, we use recently published, high spatial and temporal resolution measurements of {Sigma}{sub SFR} throughout the disk of M33 to estimate the frequencymore » of star formation episodes throughout the disk of a typical spiral galaxy. We use stellar synthesis models of these star formation histories (SFHs) to measure the variations in UV colors and find that we can replicate large dispersions in UV colors based on episodic SFHs.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.