Abstract

ABSTRACT We present a multi-wavelength photometric and spectroscopic study of 42 Brightest Cluster Galaxies (BCGs) in two samples of galaxy clusters chosen for a gravitational lensing study. The study’s initial sample combines 25 BCGs from the Cluster Lensing and Supernova Survey with Hubble sample and 37 BCGs from the Sloan Giant Arcs Survey with a total redshift range of Using archival GALEX, Hubble Space Telescope, Wide-Field Infrared Survey Explorer, Herschel, and Very Large Array data we determine the BCGs’ stellar mass, radio power, and star formation rates. The radio power is higher than expected if due to star formation, consistent with the BCGs being active galactic nucleus (AGN)-powered radio sources. This suggests that the AGN and star formation are both fueled by cold gas in the host galaxy. The specific star formation rate (sSFR) is low and constant with redshift. The mean sSFR is 9.42 × 10−12 yr−1, which corresponds to a mass doubling time of 105 billion years. These findings are consistent with models for hierarchical formation of BCGs, which suggest that star formation is no longer a significant channel for galaxy growth for z 1. Instead, stellar growth (of the order of a factor of at least two) during this period is expected to occur mainly via minor dry mergers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.