Abstract

We use the Arepo moving mesh code to simulate the evolution of molecular clouds exposed to a harsh environment similar to that found in the galactic center (GC), in an effort to understand why the star formation efficiency (SFE) of clouds in this environment is so small. Our simulations include a simplified treatment of time-dependent chemistry and account for the highly non-isothermal nature of the gas and the dust. We model clouds with a total mass of 1.3x10^5 M_{sun} and explore the effects of varying the mean cloud density and the virial parameter, alpha = E_{kin}/|E_{pot}|. We vary the latter from alpha = 0.5 to alpha = 8.0, and so many of the clouds that we simulate are gravitationally unbound. We expose our model clouds to an interstellar radiation field (ISRF) and cosmic ray flux (CRF) that are both a factor of 1000 higher than the values found in the solar neighbourhood. As a reference, we also run simulations with local solar neighbourhood values of the ISRF and the CRF in order to better constrain the effects of the extreme conditions in the GC on the SFE. Despite the harsh environment and the large turbulent velocity dispersions adopted, we find that all of the simulated clouds form stars within less than a gravitational free-fall time. Increasing the virial parameter from alpha = 0.5 to alpha = 8.0 decreases the SFE by a factor ~4-10, while increasing the ISRF/CRF by a factor of 1000 decreases the SFE again by a factor ~2-6. However, even in our most unbound clouds, the SFE remains higher than that inferred for real GC clouds. We therefore conclude that high levels of turbulence and strong external heating are not enough by themselves to lead to a persistently low SFE at the center of the Galaxy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call