Abstract

We have conducted a detailed object-by-object study of a mass-complete (M*>10^11 M_sun) sample of 56 galaxies at 1.4 < z < 2 in the GOODS-South field, showing that an accurate de-blending in MIPS/24um images is essential to properly assign to each galaxy its own star formation rate (SFR), whereas an automatic procedure often fails. This applies especially to galaxies with SFRs below the Main Sequence (MS) value, which may be in their quenching phase. After that, the sample splits evenly between galaxies forming stars within a factor of 4 of the MS rate (~45%), and sub-MS galaxies with SFRs ~10-1000 times smaller (~55%). We did not find a well defined class of intermediate, transient objects below the MS, suggesting that the conversion of a massive MS galaxy into a quenched remnant may take a relatively short time (<1 Gyr), though a larger sample should be analyzed in the same way to set precise limits on the quenching timescale. X-ray detected AGNs represent a ~30% fraction of the sample, and are found among both star-forming and quenched galaxies. The morphological analysis revealed that ~50% of our massive objects are bulge-dominated, and almost all MS galaxies with a relevant bulge component host an AGN. We also found sub-MS SFRs in many bulge-dominated systems, providing support to the notion that bulge growth, AGN activity and quenching of star formation are closely related to each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.