Abstract

Motivated by applications in instance selection, we introduce the star discrepancy subset selection problem, which consists of finding a subset of m out of n points that minimizes the star discrepancy. First, we show that this problem is NP-hard. Then, we introduce a mixed integer linear formulation (MILP) and a combinatorial branch-and-bound (BB) algorithm for the star discrepancy subset selection problem and we evaluate both approaches against random subset selection and a greedy construction on different use-cases in dimension two and three. Our results show that the MILP and BB are efficient in dimension two for large and small m/n ratio, respectively, and for not too large n. However, the performance of both approaches decays strongly for larger dimensions and set sizes.As a side effect of our empirical comparisons we obtain point sets of discrepancy values that are much smaller than those of common low-discrepancy sequences, random point sets, and of Latin Hypercube Sampling. This suggests that subset selection could be an interesting approach for generating point sets of small discrepancy value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.