Abstract

Image and video enhancement such as color constancy, low light enhancement, and tone mapping on smartphones is challenging, because high-quality images should be achieved efficiently with a limited resource budget. Unlike prior works that either used very deep CNNs or large Trans-former models, we propose a structure-aware lightweight Transformer, termed STAR, for real-time image enhancement. STAR is formulated to capture long-range dependencies between image patches, which naturally and implicitly captures the structural relationships of different regions in an image. STAR is a general architecture that can be easily adapted to different image enhancement tasks. Extensive experiments show that STAR can effectively boost the quality and efficiency of many tasks such as illumination enhancement, auto white balance, and photo retouching, which are indispensable components for image processing on smartphones. For example, STAR reduces model complexity and improves image quality compared to the recent state-of-the-art [19] on the MIT-Adobe FiveK dataset [7] (i.e., 1.8dB PSNR improvements with 25% parameters and 13% float operations.)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.