Abstract

It is of great interest to use nano- or micro-structured surfaces to inhibit microbial adhesion and biofilm formation and thereby to prevent biomaterial-associated infection, without modification of the surface chemistry or bulk properties of the materials and without use of the drugs. Our previous study showed that a submicron textured polyurethane surface can inhibit staphylococcal bacterial adhesion and biofilm formation. To further understand the effect of the geometry of textures on bacterial adhesion as well as the underlying mechanism, in this study, submicron and micron textured polyurethane surfaces featuring ordered arrays of pillars were fabricated and modified to have different wettabilities. All the textured surfaces were originally hydrophobic and showed significant reductions in Staphylococcus epidermidis RP62A adhesion in phosphate buffered saline or 25% platelet poor plasma solutions under shear, as compared to smooth surfaces. After being subjected to an air glow discharge plasma treatment, all polyurethane surfaces were modified to hydrophilic, and reductions in bacterial adhesion on surfaces were subsequently found to be dependent on the size of the patterns. The submicron patterned surfaces reduced bacterial adhesion, while the micron patterned surfaces led to increased bacterial adhesion. The extracellular polymeric substances (EPS) from the S. epidermidis cell surfaces were extracted and purified, and were coated on a glass colloidal surface so that the adhesion force and separation energy in interactions of the EPS and the surface could be measured by colloidal probe atomic force microscopy. These results were consistent with the bacterial adhesion observations. Overall, the data suggest that the increased surface hydrophobicity and the decreased availability of the contact area contributes to a reduction in bacterial adhesion to the hydrophobic textured surfaces, while the availability of the contact area is the primary determinant factor for bacterial adhesion on hydrophilic textured surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call