Abstract

Secretion of proteins into the extracellular environment is crucial for the normal physiology and virulence of pathogenic bacteria. Type I signal peptidase (SPase I) mediates the final step of bacterial secretion, by cleaving proteins at their signal peptide once they are translocated by the Sec or twin-arginine (Tat) translocon. SPase I has long been thought to be essential for viability in multiple bacterial pathogens. Challenging this view, we and others have recently created Staphylococcus aureus bacteria lacking the SPase I SpsB that are viable and able to grow in vitro when over-expressing a native gene cassette encoding for a putative ABC transporter. This transporter apparently compensates for SpsB's essential function by mediating alternative cleavage of a subset of proteins at a site distinct from the SpsB-cleavage site, leading to SpsB-independent secretion. This alternative secretion system also drives the main mechanism of resistance to an arylomycin-derived SpsB inhibitor, by means of mutations in a putative transcriptional repressor (cro/cI) causing over-expression of the ABC transporter. These findings raise multiple interesting biological questions. Unraveling the mechanism of SpsB-independent secretion may provide an interesting twist to the paradigm of bacterial secretion.

Highlights

  • Staphylococcus aureus is an important human pathogen that can cause life-threatening invasive infections, such as bacteremia, endocarditis, pneumonia, and osteomyelitis

  • A surprising observation from resistance studies performed by our group and others is that mutations in the locus encoding for the putative transcriptional regulator cro/cI confer resistance to arylomycin-derived SpsB inhibitors in S. aureus [3, 4]

  • Over-expression of the putative ABC transporter is both necessary and sufficient to compensate for the essentiality of S. aureus SpsB in vitro

Read more

Summary

Introduction

Staphylococcus aureus is an important human pathogen that can cause life-threatening invasive infections, such as bacteremia, endocarditis, pneumonia, and osteomyelitis. A surprising observation from resistance studies performed by our group and others is that mutations in the locus encoding for the putative transcriptional regulator cro/cI confer resistance to arylomycin-derived SpsB inhibitors in S. aureus [3, 4]. Over-expression of the ABC transporter overcomes the S. aureus lethality caused by either pharmacologic inhibition or genetic ablation of SpsB, and is associated with secretion of alternatively cleaved proteins [3, 5] (see Figure 2 for a model).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.