Abstract

The NfrA protein, a putative essential oxidoreductase in the soil bacterium Bacillus subtilis, is induced under heat shock and oxidative stress conditions. In order to characterize the function of an homologous NfrA protein in Staphylococcus aureus, an nfrA deletion strain was constructed, the protein was purified, the enzymatic activity was determined, and the transcriptional regulation was investigated. The experiments revealed that NfrA is not essential in S. aureus. The purified protein oxidized NADPH but not NADH, producing NADP in the presence of flavin mononucleotide, suggesting that NfrA is an NADPH oxidase in S. aureus. In addition, the NfrA enzyme showed nitroreductase activity and weak disulfide reductase activity. Transcription was strongly induced by ethanol, diamide, and nitrofurantoin. Hydrogen peroxide induced nfrA transcription only at high concentrations. The expression of nfrA was independent of the alternative sigma factor sigma(B). Furthermore, the transcriptional start site was determined, which allowed identification of a PerR box homologous sequence upstream of the nfrA promoter. The observations presented here suggest that NfrA is a nonessential NADPH oxidoreductase which may play a role in the oxidative stress response of S. aureus, especially in keeping thiol-disulfide stress in balance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.