Abstract

The membrane-damaging activities of four phenolics chosen for their bactericidal activity against Staphylococcus aureus CNRZ3 were investigated: 5,7-dihydroxy-4-phenylcoumarin (DHPC), 5,8-dihydroxy-1,4-naphthoquinone (DHNQ), epigallocatechin gallate (EGCG) and isobutyl 4-hydroxybenzoate (IBHB). Staphylococcusaureus CNRZ3 cells, as well as model liposomes mimicking its membrane phospholipids composition, were treated with each phenolic at its minimal bactericidal concentration. Membrane integrity, intracellular pH and intracellular esterase activity were examined by flow cytometric analysis of S.aureus cells stained with propidium iodide and SYTO® 9, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester, and 5(6)-carboxyfluorescein diacetate, respectively. While intracellular pH was affected by the foyr phenolics, only DHNQ and to a lesser extent EGCG, caused a loss of membrane integrity. Flow cytometric analysis of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and DPPC/POPG (2-oleoyl-1-palmitoyl-sn-glycero-3-phosphoglycerol) liposomes stained with Coumarin 6 (which penetrates the lipid bilayer) or 5-N(octadecanoyl)-amino-fluorescein (which binds to the liposome shell) suggested that only EGCG and DHNQ penetrated the bilayer of phospholipids of liposomes. Taken together, these findings support the hypothesis that EGCG and DHNQ bactericidal activity results from their accumulation in the phospholipid bilayer of S.aureus cells membrane causing its disruption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call