Abstract

Prostate cancer is usually androgen-dependent and responds well to androgen ablation therapy based on castration. However, at a certain stage some prostate cancers eventually acquire a castration-resistant phenotype where they progress aggressively and show very poor response to any anticancer therapies. To characterize the molecular features of these clinical castration-resistant prostate cancers, we previously analyzed gene expression profiles by genome-wide cDNA microarrays combined with microdissection and found dozens of trans-activated genes in clinical castration-resistant prostate cancers. Among them, we report the identification of a new biomarker, stanniocalcin 2, as an overexpressed gene in castration-resistant prostate cancer cells. Real-time polymerase chain reaction and immunohistochemical analysis confirmed overexpression of stanniocalcin 2, a 302-amino-acid glycoprotein hormone, specifically in castration-resistant prostate cancer cells and aggressive castration-naïve prostate cancers with high Gleason scores (8-10). The gene was not expressed in normal prostate, nor in most indolent castration-naïve prostate cancers. Knockdown of stanniocalcin 2 expression by short interfering RNA in a prostate cancer cell line resulted in drastic attenuation of prostate cancer cell growth. Concordantly, stanniocalcin 2 overexpression in a prostate cancer cell line promoted prostate cancer cell growth, indicating its oncogenic property. These findings suggest that stanniocalcin 2 could be involved in aggressive phenotyping of prostate cancers, including castration-resistant prostate cancers, and that it should be a potential molecular target for development of new therapeutics and a diagnostic biomarker for aggressive prostate cancers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call