Abstract

Thyroid hormone (TH) mediated changes in gene expression were thought to be primarily initiated by the nuclear TH receptor (TR) binding to a thyroid hormone response element in the promoter of target genes. A recently described extranuclear mechanism of TH action consists of the association of TH-liganded TRβ with phosphatidylinositol 3-kinase (PI3K) in the cytosol and subsequent activation of the PI3K pathway. The aim of this study was to examine the effect of TH, TRβ and PI3K on stanniocalcin 1 (STC1) expression in human cells. We treated human skin fibroblasts with triiodothyronine (T3) in the absence or presence of the PI3K inhibitor LY294002, a dominant negative PI3K subunit, Δp85α, and the protein synthesis inhibitor cycloheximide (CHX). The role of the TRβ was studied in cells from patients with resistance to thyroid hormone (RTH). STC-1 mRNA expression was measured by real-time PCR. We found an induction of STC1 by T3 in normal cells, but less in cells from subjects with RTH (2.7 ± 0.2 vs. 1.6 ± 0.04, P < 0.01). The effect of T3 was completely abrogated by blocking PI3K with LY294002 (3.9 ± 0.5 vs. 0.85 ± 0.5; P < 0.05) and greatly reduced after transfection of a dominant negative PI3K subunit, demonstrating dependency on the PI3K pathway. These results establish STC1 as a TH target gene in humans. Furthermore, we show that STC1 induction by TH depends on both TRβ and PI3K activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.