Abstract

Mammalian Stanniocalcin-1 (STC1) is a glycoprotein that has been implicated in various biological processes including angiogenesis. Aberrant STC1 expression has been reported in breast, ovarian and prostate cancers, but the significance of this is not well understood. Here, we report that oxidative stress caused a 40-fold increase in STC1 levels in mouse embryo fibroblasts (MEFs). STC1-/- MEFs were resistant to growth inhibition and cell death induced by H(2)O(2) or by 20% O(2) (which is hyperoxic for most mammalian cells); this is the first phenotype reported for STC1-null cells. STC1-/- cells had higher levels of activated MEK and ERK1/2 than their wild-type (WT) counterparts, and these levels were all reduced by stable expression of exogenous STC1 in STC1-/- cells. Furthermore, pharmacological inhibition by PD98059 or UO126 of MEK and therefore of ERK1/2 activation restored sensitivity of STC1-/- cells to oxidative stress. We also found that H(2)O(2)-induced STC1 expression in WT cells was abolished by inhibition of ERK1/2 activation. Thus, the ERK1/2 signaling pathway upregulates STC1 expression, which in turn downregulates the level of activated MEK and consequently ERK1/2 in a novel negative feedback loop. Therefore, STC1 expression downregulates prosurvival ERK1/2 signaling and reduces survival under conditions of oxidative stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.