Abstract
The dynamical responses of random field Ising model at zero temperature, driven by standing magnetic field wave, are studied by Monte Carlo simulation in two dimensions. The three different kinds of distribution of quenched random field are used here, uniform, bimodal and Gaussian. In all cases, three distinct dynamical phases were observed, namely, the pinned, structured and random. In the pinned phase no spin flip is observed. In the structured phase standing spin wave modes are observed. The random phase is shown with no observed regular pattern. For a fixed value of the amplitude of the standing magnetic field wave, in the region of small quenched field, the system remains in a pinned phase. In the intermediate range of values of random field, a standing spin wave mode (structured phase) is observed. The regular pattern of this spin wave mode disappears for higher values of random field yielding a random phase. The comprehensive phase boundaries are drawn in all three cases. The boundary of pinned phase is analytically calculated for uniform and bimodal types of quenched random fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.