Abstract

The formation and control of strongly nonlinear standing plasma waves (SPWs) from a trivial equilibrium by a chirped frequency drive are discussed. If the drive amplitude exceeds a threshold, after passage through the linear resonance in this system, the excited wave preserves the phase locking with the drive, yielding a controlled growth of the wave amplitude. We illustrate these autoresonant waves via Vlasov–Poisson simulations, showing the formation of sharply peaked excitations with local electron density maxima significantly exceeding the unperturbed plasma density. The Whitham averaged variational approach applied to a simplified water bag model yields the weakly nonlinear evolution of the autoresonant SPWs and the autoresonance threshold. If the chirped driving frequency approaches some constant level, the driven SPW saturates at a target amplitude, avoiding the kinetic wave breaking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.