Abstract
Nonvolatile spintronic devices have potential advantages, such as fast read/write and high endurance together with back-end-of-the-line compatibility, which offers the possibility of constructing not only stand-alone RAMs and embedded RAMs that can be used in conventional VLSI circuits and systems but also standby-power-free high-performance nonvolatile CMOS logic employing logic-in-memory architecture. The advantages of employing spintronic devices, especially magnetic tunnel junction (MTJ) devices with CMOS circuits, are discussed, and the current status of the MTJ-based VLSI computing paradigm is presented along with its prospects and remaining challenges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.