Abstract

Scaling down of CMOS Technology reduces supply voltage which helps evade device botch caused by high electric fields in the conducting channel under the gate and gate oxide. Voltage scaling lessens circuit power consumption but increases delay of logic gates badly and the performance is degraded to a large extent in deep submicron CMOS VLSI circuits. In order to achieve good performance, the delay of logic gates has to be decreased. Circuits for trimming down of leakage power in sub-micron technologies also increase the dynamic power to a large extent. In this paper, a novel hybrid MTCMOS technique is proposed to reduce the enormous delay in gates due to sleep transistors; also, static power consumption is reduced without much affecting the dynamic power consumption of the circuit. For the 16-bit Ripple Carry Adder, the proposed technique can save up to 76.8% of static power consumption and 55.5% of dynamic power consumption also.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.