Abstract
For decades three-dimensional (3D) measurements of engineering components have been made using fixed metrology-room based coordinate measuring machines (CMMs) fitted most commonly with single point or to a much lesser extent, scanning tactile probes. Over the past decade there has been a rapid uptake in development and subsequent use of portable optical-based 3D coordinate measuring systems. These optical-based systems capture vast quantities of point data in a very short time, often permitting freeform surfaces to be digitized. Documented standards, for example ISO 10360, for the verification of fixed CMMs fitted with tactile probes are now widely available, whereas verification procedures and more specifically verification artefacts for optical-based systems are still in their infancy. Furthermore, the industry is seeking traceability in 3D measurements of high precision components. A recent requirement is the demand for highly accurate measurements of large gears with diameters up to 1000 mm as used in gear boxes of wind turbines. Up until now it has been impossible to ensure traceability of 3D measurements of big gears, since no traceable standards were available. This paper describes three different types of artefacts that were developed during the project, namely tetrahedron artefacts for testing the basic measurement capability of optical 3D devices, freeform verification artefacts for testing the capability of measuring complex geometry, and a large gear artefact for task related calibration of different types of CMMs. In addition, artefact calibration data and associated measurement uncertainties and international intercomparisons are presented. These developments will be of considerable value to end users, calibration laboratories and producers of optical and tactile CMMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.