Abstract

A method has been developed that allows the accurate, standardless measurement of the elemental composition of metal samples from single laser ablation (LA) pulses. This technique provides a fast, low-sample-consumption means for the characterization of samples having a range of matrixes. The method directly compares adjusted elemental signals with the total mass spectrometric signal to produce relative percent composition information. Three mathematical techniques were used to determine the accuracy and precision of single-shot LA measurement. Comparison of the techniques showed that a linear regression calculation, which plots individual elemental signals as a function of the summed signal for all elements in the sample on a point-by-point basis during a laser ablation transient proved superior. The simultaneous extraction capability of time-of-flight mass spectrometry permits the sampling of all analytes from any temporal position within the transient laser ablation pulse, thereby reducing quantitation error. A typical concentration dynamic range of 3 orders of magnitude, from 0.1 to 100%, was achieved. However, by measuring low-abundance isotopes for matrix elements, the dynamic range of the technique was extended to 4 orders of magnitude. The new technique is largely immune to sample matrix effects commonly experienced in laser ablation. By performing a complete elemental analysis from a single ablation pulse, high spatial resolution should be achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.