Abstract
BackgroundThe Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) can be used to transform observational health data to a common format. CDM transformation allows for analysis across disparate databases for the generation of new, real-word evidence, which is especially important in rare disease where data are limited. Pulmonary hypertension (PH) is a progressive, life-threatening disease, with rare subgroups such as pulmonary arterial hypertension (PAH), for which generating real-world evidence is challenging. Our objective is to document the process and outcomes of transforming registry data in PH to the OMOP CDM, and highlight challenges and our potential solutions.MethodsThree observational studies were transformed from the Clinical Data Interchange Standards Consortium study data tabulation model (SDTM) to OMOP CDM format. OPUS was a prospective, multi-centre registry (2014–2020) and OrPHeUS was a retrospective, multi-centre chart review (2013–2017); both enrolled patients newly treated with macitentan in the US. EXPOSURE is a prospective, multi-centre cohort study (2017–ongoing) of patients newly treated with selexipag or any PAH-specific therapy in Europe and Canada. OMOP CDM version 5.3.1 with recent OMOP CDM vocabulary was used. Imputation rules were defined and applied for missing dates to avoid exclusion of data. Custom target concepts were introduced when existing concepts did not provide sufficient granularity.ResultsOf the 6622 patients in the three registry studies, records were mapped for 6457. Custom target concepts were introduced for PAH subgroups (by combining SNOMED concepts or creating custom concepts) and World Health Organization functional class. Per the OMOP CDM convention, records about the absence of an event, or the lack of information, were not mapped. Excluding these non-event records, 4% (OPUS), 2% (OrPHeUS) and 1% (EXPOSURE) of records were not mapped.ConclusionsSDTM data from three registries were transformed to the OMOP CDM with limited exclusion of data and deviation from the SDTM database content. Future researchers can apply our strategy and methods in different disease areas, with tailoring as necessary. Mapping registry data to the OMOP CDM facilitates more efficient collaborations between researchers and establishment of federated data networks, which is an unmet need in rare diseases.
Highlights
The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) can be used to transform observational health data to a common format
We aim to describe our experience in transforming data from the OPsumit® USers (OPUS), OrPHeUS and EXPOSURE observational studies from the study data tabulation model (SDTM) to the OMOP CDM, and to highlight the benefits and challenges to this novel process
Patients excluded during mapping to OMOP CDM, n (%)
Summary
The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) can be used to transform observational health data to a common format. CDM transformation allows for analysis across disparate databases for the generation of new, real-word evidence, which is especially important in rare disease where data are limited. Our objective is to docu‐ ment the process and outcomes of transforming registry data in PH to the OMOP CDM, and highlight challenges and our potential solutions. Evidence generated from observational, real-world data can be highly insightful and is increasing in importance, in rare diseases where information is Biedermann et al BMC Med Res Methodol (2021) 21:238 limited [1,2,3]. A CDM is an informational model that allows transformation of data contained in different databases to a common format, in which all coding and vocabulary are pre-specified and standardized [12], and can be applied to all data irrespective of product or therapy area. Transforming data sources into CDM is a convenient way to allow analyses across multiple sources
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.