Abstract
Poly(ethylene terephthalate) (PET) is a polyester plastic, which is widely used, notably as a material for single-use plastic bottles. Its accumulation in the environment now poses a global pollution threat. A number of enzymes are active on PET providing new options for industrial biorecycling of PET materials. The enzyme activity is strongly affected by the degree of PET crystallinity (XC), and the XC is therefore a relevant factor to consider in enzyme catalyzed PET recycling. Here, we present a new experimental methodology, based on systematic thermal annealing for controlled preparation of PET disks having different XC, to allow systematic quantitative evaluation of the efficiency of PET degrading enzymes at different degrees of PET substrate crystallinity. We discuss the theory of PET crystallinity and compare PET crystallinity data measured by differential scanning calorimetry and attenuated Fourier transform infrared spectroscopy.•This study introduces a simple method for controlling the crystallinity of PET samples via annealing in a heat block.•The present methodology is not limited to the analytical methods included in the methods details.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.