Abstract

Polysomnography (PSG) scoring is labor intensive, subjective, and often ambiguous. Recently several deep learning (DL) models for automated sleep scoring have been developed, they are tied to a fixed amount of input channels and resolution. In this study, we constructed a standardized image-based PSG dataset in order to overcome the heterogeneity of raw signal data obtained from various PSG devices and various sleep laboratory environments. All individually exported European data format files containing raw signals were converted into images with an annotation file, which contained the demographics, diagnoses, and sleep statistics. An image-based DL model for automatic sleep staging was developed, compared with a signal-based model and validated in an external dataset. We constructed 10,253 image-based PSG datasets using a standardized format. Among these, 7,745 diagnostic PSG data were used to develop our DL model. The DL model using the image dataset showed similar performance to the signal-based dataset for the same subject. The overall DL accuracy was greater than 80%, even with severe obstructive sleep apnea. Moreover, for the first time, we showed explainable DL in the field of sleep medicine as visualized key inference regions using Eigen-class activation maps. Furthermore, when a DL model for sleep scoring performs external validation, we achieved a relatively good performance. Our main contribution demonstrates the availability of a standardized image-based dataset, and highlights that changing the data sampling rate or number of sensors may not require retraining, although performance decreases slightly as the number of sensors decreases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.