Abstract

To study the relationship between standardized 18F-FDG PET/CT radiomic features and clinicopathological variables and programmed death ligand-1 (PD-L1) expression status in non-small cell lung cancer (NSCLC) patients. 58 NSCLC patients with preoperative 18F-FDG PET/CT scans and postoperative results of PD-L1 expression were retrospectively analysed. A standardized, open-source software was used to extract 86 radiomic features from PET and low-dose CT images. Univariate analysis and multivariate logistic regression were used to find independent predictors of PD-L1 expression. The Area Under the Curve (AUC) of receiver operating characteristic (ROC) curve was used to compare the ability of variables and their combination in predicting PD-L1 expression. Multivariate logistic regression resulted in the PET radiomic feature GLRLM_LGRE (Odds Rate (OR): 0.300 vs 0.114, 95% confidence interval (CI): 0.096-0.931 vs 0.021-0.616, in NSCLC and adenocarcinoma respectively) and the CT radiomic feature GLZLM_SZE (OR: 3.338 vs 7.504, 95%CI: 1.074-10.375 vs 1.382-40.755, in NSCLC and adenocarcinoma respectively), being independent predictors of PD-L1 status. In NSCLC group, after adjusting for gender and histology, the PET radiomic feature GLRLM_LGRE (OR: 0.282, 95%CI: 0.085-0.936) remained an independent predictor for PD-L1 status. In the adenocarcinoma group, when adjusting for gender the PET radiomic feature GLRLM_LGRE (OR: 0.115, 95%CI: 0.021-0.631) and the CT radiomic feature GLZLM_SZE (OR: 7.343, 95%CI: 1.285-41.965) remained associated with PD-L1 expression. NSCLC and adenocarcinoma with PD-L1 expression show higher tumour heterogeneity. Heterogeneity-related 18F-FDG PET and CT radiomic features showed good ability to non-invasively predict PD-L1 expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call